

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 4134–4143

Studies on the reactivity of calix[4]arene derived bis(spirodienone) with carbo- and hetero-dienophiles and dichlorocarbene: synthesis of highly functionalized macrocycles

V. B. Ganga,^a T. Sreeja,^a E. Suresh^b and R. Luxmi Varma^{a,*}

a
Organic Chemistry Section, Chemical Sciences Division, Regional Research Laboratory (CSIR), Trivandrum 695 019, Kerala, India
b Analytical Science Discipline, Central Salt and Marine Chemicals Research Institute, Bhaynan ^bAnalytical Science Discipline, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India

> Received 17 November 2006; revised 6 February 2007; accepted 22 February 2007 Available online 25 February 2007

Abstract—Calix[4]arene derived bis(spirodienone) can act as a 4π component in cycloaddition reaction with a variety of carbo- and heterodienophiles yielding the bisadducts in excellent to quantitative yields. Bis(spirodienone) also undergoes addition reactions with dichlorocarbene resulting in mono- and bis-dichlorocyclopropyl derived bis(spiroenones) in excellent yields.

 $© 2007 Elsevier Ltd. All rights reserved.$

1. Introduction

 $Calix[n]$ arenes^{[1](#page-9-0)} are synthetic macrocycles obtained by the base catalyzed condensation of p-substituted phenols and formaldehyde. Because of their unlimited functionalization possibilities at the lower/upper rims and methylene junctions, calix $[n]$ arenes are regarded as highly versatile building blocks for the design of selective receptors for the recognition of metal ions, anions, and neutral molecules.[2](#page-9-0) Biali and co-workers $3-8$ have shown that in the presence of tetraalkylammonium tribromide in a basic medium, the hydroxyl groups bordering the lower rim of calix[4]arene can participate in an intramolecular oxidative cyclization reaction giving rise to an interesting series of multifunctional molecules namely bis(spirodienones) 1a–c ([Fig. 1](#page-1-0)).

The calix[4]bis(spirodienone) derivatives are remarkable since in a single step the hydroxyl groups are transformed into carbonyl and ether functionalities, two phenolic rings are transformed to cyclohexadienone moieties and in the process, two spiro stereocentres are also introduced in the macrocycle. These functionalities provide potential means for the modification of the calix skeleton. These spirodienone derivatives have been used as synthetic intermediates for achieving selective functionalization of the calixarenes at the intraannular, extraannular and methylene positions.^{[9](#page-9-0)}

The bis(spirodienones) appear attractive from the vantage point of their transformations to novel structural frameworks

0040–4020/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.02.100

with potentially useful properties. Of special interest to us has been their Diels–Alder reactivity as the dienone moieties in compounds 1a–c can, in principle, act as efficient 4π components. We undertook some investigations in this area and our preliminary results have been published. The results showed that the most stable isomer bis(spirodienone) 1a can act as a 4π component in a cycloaddition reaction with activated acetylenes.^{[10](#page-9-0)} As part of our continued interest in the cycloaddition chemistry of bis(spirodienones), we undertook a systematic investigation of the cycloaddition reaction of 1a with various carbo- and hetero-dienophiles. The detailed results of our investigation are presented in the following section.

2. Results and discussion

2.1. Cycloaddition reactions with carbo-dienophiles

2.1.1. With triple bonded systems. As part of our interest in the design of novel macrocyclic systems, we undertook a systematic investigation of the cycloaddition of the calix[4] arene derived bis(spirodienone) with various dienophiles. We commenced our investigation by reacting a series of acetylenes, both electron deficient and electron rich with the most stable isomer 1a, which was synthesized following Biali's procedure.^{[5](#page-9-0)} Our experiment started with the reaction of 2 equiv of dimethyl acetylenedicarboxylate (DMAD), 2a with 1a in dry toluene under ambient conditions [\(Scheme 1\)](#page-1-0).

After column chromatographic purification, the product 3a was obtained in quantitative yield and characterized by

Corresponding author. Tel.: +91 471 2515275; fax: +91 471 2491712; e-mail: lux_varma@rediffmail.com

Figure 1.

Scheme 1.

spectral techniques. The IR spectrum showed the ester carbonyl absorption at 1746 cm^{-1} and the ring carbonyl absorption at 1710 cm^{-1} . The highly symmetrical nature of the product was evident from the well-defined ¹H NMR spectrum. The aromatic protons resonated at δ 7.06 and 6.89 as singlets. The olefinic proton H_a and the ring junction proton H_b appeared as close doublets due to allylic coupling at δ 4.82 (J=2.1 Hz) and 4.35 (J=2.1 Hz). In the ¹³C NMR spectrum, the signals due to the ring carbonyl, ester carbonyls and the spiro carbons appeared at δ 192.7, 166.0, 163.0 and 77.2, respectively. The structure and stereochemistry of the product were finally arrived at by single crystal X-ray analysis^{[11](#page-9-0)} (Fig. 2). A selective approach of the

Figure 2. ORTEP diagram of 3a (hydrogen atoms omitted for clarity).

dienophile from the face opposite to the dihydrofuran oxygen results in the exclusive formation of the exo–exo isomer.

All activated acetylenes with electron withdrawing groups reacted with 1a yielding the bisbicyclo[2.2.2]octenone derivatives in excellent yields (Table 1). Diphenylacetylene and ethoxyacetylene failed to react with the substrate even in sealed tube conditions probably due to electronic reasons. Even though the products 3c and 3d (entries 3 and 4) were obtained exclusively as single isomers, products 3e and 3f were obtained as mixtures of two regioisomers. In these cases, the lower regioselectivity might be the result of marginal differences in steric demands of the acetylene substituents. The separation of the regioisomers (3e, entry 7) could not be achieved by column chromatography. However, the isomers (3f, entry 8) were separated by repeated column

Table 1

^a Mixture of two regioisomers in the ratio 1:1.

chromatography and characterized. The regiochemistry of 3d was ascertained by 1 H NMR spectrum.

When DMAD was reacted with 1b under ambient conditions, the product obtained was exclusively 3a. This is easily explainable as the stereoisomers 1a and 1b exist in equilibrium in solution.[5](#page-9-0)

2.1.2. With double bonded systems. In order to study the reactivity of double bonded systems on cycloaddition with bis(spirodienone), we started our investigation by reacting N-phenyl maleimide with 1a. The cycloadduct was obtained in excellent yield (86%) under ambient conditions. (Scheme 2).

Scheme 2.

The structure of the adduct was established by spectroscopic methods. In the IR spectrum, the carbonyl peaks were observed as a broad band at 1717 cm^{-1} . In the ¹H NMR spectrum, the aromatic protons appeared as multiplet ranging from δ 7.60 to 7.37 and one doublet at δ 7.18 (J=2.4 Hz). The olefinic proton H_a resonated as a singlet at δ 4.83. The singlet at δ 3.58 was assigned to the ring junction proton H_b . In the ¹³C NMR spectrum, the cyclohexenone carbonyl resonated at δ 202 whereas the other two carbonyls appeared at δ 174.6 and 174.5. The spiro carbon furnished a peak at δ 82.7.

The reaction was found to be applicable to other symmetric olefinic systems like maleimide and maleic anhydride. The reaction was then extended to asymmetric olefinic systems with electron withdrawing groups. When 1a was treated with acrylonitrile in toluene under reflux conditions the bisadduct was obtained in good yield (Scheme 3).

The structure of the adduct 5d was assigned by spectroscopic methods. In the IR spectrum, the carbonyl peak was observed at 1739 cm^{-1} . The aromatic protons appeared as singlets at δ 7.08 and 7.01. The olefinic proton, H_a appeared as a singlet at δ 4.76 and the ring junction proton, H_b as a broad singlet at δ 3.07. The proton, H_c resonated as a doublet of doublet at δ 2.72. The protons H_d and H_e appeared as multiplets at δ 2.05 and 1.75, respectively. The regiochemistry of the product was further confirmed by H - H COSY experiment. The proton, H_c , which appeared as a double doublet showed correlation with the adjacent H_e and H_d protons. The protons H_d and H_e showed correlation with both H_c and the ring junction proton, H_b . The ring carbonyl displayed a ¹³C resonance signal at δ 204.0. The signal at δ 84.3 was assigned to the spiro carbon.

The reaction was repeated with other asymmetric olefinic systems and was found to be of general nature. All the reactions were regiospecific fetching only single products, which showed similar ¹H NMR spectrum as that of 5a except for entry 7 where the dimethylfumarate reacted to give two isomeric products in 1:1 ratio. The results are summarized in [Table 2.](#page-3-0)

2.2. Cycloaddition reactions with hetero-dienophiles

In view of the encouraging results obtained in the cycloaddition of bis(spirodienone) 1a with double and triple bonded systems, we extended our studies towards its cycloaddition reactions to hetero-dienophiles. With the aim of exploring their potential for the synthesis of complex structures based on the calixarene skeleton, we chose N-substituted-1,2,4- triazoline-3,5-diones^{[12,13](#page-9-0)} as hetero-dienophiles for our study. 1,2,4-Triazoline-3,5-diones are very reactive cyclic azo-dienophiles and they have an intrinsic capability to introduce an N–N moiety into the structure of the cycloadduct. The resulting biscycloadducts could be potential intermediates for further structural transformations.

We commenced our study by reacting the bis(spirodienone) 1a with N-phenyl-1,2,4-triazoline-3,5-dione (Scheme 4). A facile reaction occurred at ambient conditions leading to the formation of the cycloadduct in quantitative yield. After purification by column chromatography, to remove the excess of dienophile, the product, 7a was fully characterized by spectral techniques.

 $i =$ toluene, 110 °C, 8 h

Table 2

Entry	Substrate	Dienophile	Temp $(T, {}^{\circ}C)$	Time (t, h)	Product, yield $(\%)$
1	1a	O N-Ph	25	18	5a , 86
2	1a	O	110	$\overline{4}$	5b, 98
3	1a	NH Ω	110	$\overline{4}$	5c, 98
4	1a	\angle CN	110	8	5d, 86
5	1a	CHO	110	10	5e, 80
6	1a	CO ₂ Me	110	12	5f, 70
7	1a	CO ₂ Me MeO ₂ C	110	14	5g, 80

The IR spectrum showed strong carbonyl absorptions at 1712 and 1762 cm^{-1} corresponding to the ring carbonyl and the carbonyl groups of the triazoline part, respectively. The highly symmetrical nature of the cycloadduct was evident from the ¹H NMR spectrum, which showed well-defined proton resonance signals. In the ¹H NMR spectrum the aromatic protons appeared as multiplet centred at δ 7.45 and as singlets at δ 7.20 and 7.10. The olefinic proton, H_a displayed a singlet at δ 5.24. The doublet at δ 5.11 (*J*=1.8 Hz) was assigned to the ring junction proton H_b . All other signals were in good agreement with the assigned structure. In the 13 C NMR spectrum, the signals due to the ring carbonyl and the carbonyl of the triazoline part appeared at δ 193.4, 154.6 and 154.3, respectively. The spiro carbon resonated at δ 81.5. The final conformation and stereochemistry of the structure were obtained from single crystal X-ray analysis^{[14](#page-9-0)} (Fig. 3).

The reaction was found to be general for 1,2,4-triazoline-3,5-diones and resulted in the formation of triazoline dione derived macrocycles based on calix[4]arenes in excellent yields (Table 3).

Figure 3. ORTEP diagram of the compound 7a with 40% probability for the thermal ellipsoid (hydrogen atoms omitted for clarity).

It was observed that the cycloaddition of 1a with diethyl azodicarboxylate $15-17$ required more stringent conditions and the cycloadduct was obtained by treating 1a with 8a in dry toluene under reflux conditions for 7 h (Scheme 5).

Scheme 5.

The IR spectrum of the compound displayed strong carbonyl absorptions at 1756, 1737 and 1703 cm^{-1} corresponding to the ester carbonyl groups and the ring carbonyls, respectively. In the ¹H NMR spectrum, the aromatic protons

resonated as a singlet at δ 7.13 and as a multiplet at δ 7.00. The singlet at δ 5.43 was assigned to the olefinic proton, H_a . The ring junction proton, H_b appeared as a multiplet at δ 5.15. The –OCH₂ protons of the ester group resonated as a multiplet at δ 4.19. The CH₃ protons were observed as a multiplet ranging from δ 1.26 to 1.15. All other proton signals were in good agreement with the proposed structure. The ester carbonyl and the ring carbonyl displayed 13 C resonance signals at δ 196.9, 159.1 and 154.9. The signal at δ 84.3 was assigned to the spiro carbon.

With diisopropyl azodicarboxylate the reaction occurred in a similar way affording the product in quantitative yield. But the di-tert-butyl azodicarboxylate failed to react even under sealed tube conditions probably due to steric reasons (Table 4).

Acylnitroso compounds are also good hetero-dienophiles[18–20](#page-9-0) and in principle can participate in cycloaddition reactions with bis(spirodienones). When 1a was treated with benzohydroxamic acid in dry chloroform in the presence of tetrabutylammonium periodate and heated at 61 °C for 24 h, the 1,2-oxazine derived cycloadduct 11a was obtained in 40% yield (via cycloaddition of the nitroso derivative generated in situ). The unreacted starting material was recovered. The symmetric nature of the product was evident from the ¹H NMR spectrum (Scheme 6).

The IR spectrum showed two carbonyl absorption peaks at 1759 and 1653 cm^{-1} . The aromatic protons of the acylnitroso part appeared as a doublet at δ 7.69 (J=6.9 Hz) and as a multiplet ranging from δ 7.46 to 7.36. The singlets at δ 7.17 and 6.91 were assigned to the aromatic protons of the calix[4](spiroenone) part. The olefinic proton, H_a and the ring junction proton, H_b appeared as singlets at δ 5.85 and 5.12, respectively. All other protons were in good agreement with the proposed structure. The signals at δ 195.1 and 155.1 in the 13 C NMR spectrum were assigned to the ring

Table 4

Scheme 6.

carbonyl and the carbonyl group of the nitroso species. The spiro carbon appeared at δ 82.5. The same reactivity pattern was observed for p-tert-butyl benzohydroxamic acid (entry 5, Table 4).

In all cases only one isomer was obtained from good to excellent yields. The reaction is highly regio- and stereospecific.

2.3. Addition reaction with dichlorocarbene

Results from our group have shown that the bis(spirodienone) 1a acts as 2π component in cycloaddition with 1,2benzoquinones and the double bond shown in red in [Figure 1](#page-1-0) has reacted.^{[21](#page-9-0)} This prompted us to investigate on the reactivity of 1a with carbenes. When 1a was treated with dichlorocarbene generated from chloroform and sodium hydroxide, two products were obtained in good yields [\(Scheme 7\)](#page-5-0). On spectral analysis 12a was identified as the bisadduct and 12b as the monoadduct.

The IR spectrum of the bisadduct showed strong carbonyl absorption at 1686 cm^{-1} corresponding to the enone carbonyl group. In the ¹H NMR spectrum, the aromatic protons appeared as singlets at δ 7.16 and 7.07. The olefinic proton, H_a appeared as a singlet at δ 6.53 and the ring junction proton, H_b as a singlet at δ 2.61. All other signals were in good agreement with the assigned structure. In the 13 C NMR spectrum, the signals due to the ring carbonyl and the spiro carbon resonated at δ 186.0 and 81.3. From the spectral data it was confirmed that the double bond near to the tert-butyl group (shown in red in [Fig. 1](#page-1-0)) has reacted in this case. Conclusive evidence for the structure was obtained by single crystal X-ray analysis^{[22](#page-9-0)} ([Fig. 4](#page-5-0)).

The structure of the monoadduct was established by spectroscopic methods. The IR spectrum of the compound showed a broad absorption peak at 1689 cm^{-1} corresponding to the enone carbonyl. In the ¹H NMR spectrum, the aromatic protons appeared as singlets at δ 7.15, 7.09 and 7.05. The singlets observed at δ 6.62, 6.53 and 5.83 were assigned to the olefinic protons. The ring junction proton, H_c displayed a singlet at δ 2.62. All other protons were in good agreement with the proposed structure. The cyclohexadienone and hexenone carbonyls displayed ¹³C resonance signals at δ 194.9 and 186.3. The spiro carbons resonated at δ 81.6 and 81.3.

 $i = CHCl₃$: H₂O (3:1), TBAB, rt, 8 h

Scheme 7.

Figure 4. ORTEP diagram of the compound 12a (hydrogen atoms omitted for clarity).

When 1a was treated with dimethoxycarbene and carbene generated from diethyl diazomalonate, no reaction took place and the starting material was recovered quantitatively.

3. Conclusion

In conclusion, we have successfully employed the Diels– Alder chemistry for the synthesis of highly functionalized calixarene analogues. The bisadducts were obtained in excellent to quantitative yields with very good diastereofacial selectivity. The bisbicyclo[2.2.2]octenone, triazoline dione, hydrazine and oxazine derivatives can be potential candidates for further synthetic transformations and it is conceivable that the present strategy may open up possibilities for the construction of highly functionalized macromolecules from the calix[4]arene skeleton.

4. Experimental

4.1. General

All reactions were conducted in oven-dried glassware under an atmosphere of argon. Progress of the reactions was monitored by thin-layer chromatography and purification was effected using silica gel column chromatography. ¹H and 13 C NMR spectra were recorded on Bruker DPX300 FTNMR spectrometer at 300 and 75 MHz, respectively. Chemical shifts are reported in δ (ppm) relative to Me₄Si (¹H NMR) or CDCl₃ (13 C NMR) as internal standard. Abbreviations for NMR multiplicities are as follows: s, singlet; d, doublet; m, multiplet; dd, double doublet; coupling constants J are reported in hertz (Hz). IR spectra were recorded on Bomem MB Series FTIR spectrometer and the absorbances are reported in cm-1 . Recrystallization was done by slow evaporation method from dichloromethane–acetonitrile mixture at rt.

4.2. Typical procedure for the preparation of 3a

Calix[4]bis(spirodienone) 1a (50 mg, 0.078 mmol) was dissolved in dry toluene (8 mL) under inert atmosphere. Dimethyl acetylenedicarboxylate (23 mg, 0.163 mmol) was added to it and stirred at rt for 12 h. The solvent was removed under vacuum and the residue subjected to silica gel column chromatography to remove the excess dienophile using 85:15 hexane–ethylacetate solvent mixture to afford 3a as a white solid $(70 \text{ mg}, 99\%)$.

4.3. Spectroscopic data for new compounds

4.3.1. Compound 3a. White crystalline solid; R_f : 0.15 (9:1) hexane–ethylacetate); mp>300 °C (decomp.). IR (KBr) ν_{max} : 2957, 1746, 1613, 1480, 1261, 1056, 895 cm⁻¹. ¹H NMR: δ 7.05 (s, 2H), 6.89 (s, 2H), 4.82 (d, J=2.1 Hz, 2H), 4.35 (d, J=2.1 Hz, 2H), 4.09 (d, J=14.4 Hz, 2H), 3.87 (s, 6H), 3.79 (s, 6H), 3.31 (d, $J=15.6$ Hz, 2H), 3.00 (d, $J=15.6$ Hz, 2H), 2.55 (d, $J=14.5$ Hz, 2H), 1.30 (s, 18H), 0.98 (s, 18H). 13C NMR: d 192.7, 166.0, 163.0, 153.5, 150.8, 144.2, 135.5, 127.5, 125.5, 120.0, 118.3, 77.2, 59.5, 52.5, 38.8, 34.3, 31.7, 27.6. MS (FAB) m/z calcd for $C_{56}H_{64}O_{12}$ +H: 929.44. Found: 929.73. Analysis calculated for $C_{56}H_{64}O_{12}$: C, 72.39; H, 6.94. Found: C, 72.04; H, 7.20.

4.3.2. Compound 3b. White crystalline solid; R_f : 0.48 (9:1) hexane–ethylacetate); mp >298 °C (decomp.). IR (KBr) v_{max} : 2957, 1744, 1701, 1484, 1367, 1164, 1055, 896 cm-1 . 1 H NMR: d 7.07 (s, 2H), 6.86 (s, 2H), 4.73 (d, $J=2.1$ Hz, 2H), 4.18 (d, $J=2.1$ Hz, 2H), 4.07 (d, $J=$ 14.1 Hz, 2H), 3.26 (d, $J=15.6$ Hz, 2H), 3.04 (d, $J=$ 15.6 Hz, 2H), 2.67 (d, J=14.4 Hz, 2H), 1.56 (s, 18H), 1.50 (s, 18H), 1.30 (s, 18H), 0.97 (s, 18H). 13C NMR: d 192.3, 164.6, 162.6, 155.2, 153.1, 149.0, 144.0, 136.7, 127.5, 126.1, 120.2, 119.8, 118.9, 116.5, 82.9, 59.5, 48.2, 38.7, 34.4, 34.3, 31.9, 28.4, 28.2, 27.8, 27.7. MS (FAB) m/z calcd for $C_{68}H_{88}O_{12}$ +H: 1097.63. Found: 1097.95.

4.3.3. Compound 3c. White crystalline solid; R_f : 0.44 (9:1) hexane–ethylacetate); mp >295 °C (decomp.). IR (KBr) ν_{max} : 2955, 1738, 1700, 1483, 1437, 1331, 1247, 1204, 1139, 942, 895, 704 cm⁻¹. ¹H NMR: δ 7.35 (m, 7H), 7.25 (s, 2H), 7.05 (s, 3H), 6.67 (s, 2H), 4.92 (s, 2H), 4.41 (d, $J=2.1$ Hz, 2H), 3.80 (d, $J=14.7$ Hz, 2H), 3.50 (s, 6H), 3.41 (d, J=15.6 Hz, 2H), 3.14 (d, J=15.6 Hz, 2H), 2.24 (d, $J=15.0$ Hz, 2H), 1.28 (s, 18H), 1.01 (s, 18H). ¹³C NMR: d 195.1, 165.0, 159.5, 154.5, 153.6, 143.7, 136.2, 134.7, 127.9, 127.6, 127.2, 125.5, 119.9, 118.9, 78.1, 62.2, 51.7, 48.3, 38.9, 34.4, 34.2, 31.2, 29.4, 27.6. MS (FAB) m/z calcd for $C_{64}H_{68}O_8 + H$: 965.49. Found: 965.89.

4.3.4. Compound 3d. White crystalline solid; R_f : 0.39 (9:1) hexane–ethylacetate); mp >300 °C (decomp.). IR (KBr) ν_{max} : 2957, 1742, 1719, 1480, 1363, 1308, 1235, 1059, 942, 902 cm⁻¹. ¹H NMR: δ 7.22 (d, J=6.6 Hz, 2H), 7.01 $(s, 2H), 6.94 (s, 2H), 4.93 (d, J=2.1 Hz, 2H), 4.28 (d,$ $J=15.0$ Hz, 2H), 3.84 (dd, $J_1=2.4$ Hz, $J_2=2.4$ Hz, 2H), 3.77 (s, 6H), 3.38 (d, J=15.6 Hz, 2H), 3.18 (d, J=15.3 Hz, 2H), 2.80 (d, J=15.6 Hz, 2H), 1.30 (s, 18H), 0.96 (s, 18H). ¹³C NMR: δ 193.3, 164.3, 154.6, 151.8, 144.8, 143.5, 141.1, 127.7, 125.4, 120.2, 118.9, 85.9, 58.0, 51.6, 47.6, 34.1, 33.9, 31.7, 30.7, 27.4. MS (FAB) m/z calcd for $C_{52}H_{60}O_8^+$: 812.43. Found: 812.11.

4.3.5. Compound 3e (inseparable isomers in the ratio 1:1). White crystalline solid; R_f : 0.41 (9:1 hexane–ethylacetate); mp>302 °C (decomp.). IR (KBr) v_{max} : 2957, 1742, 1716, 1689, 1483, 1436, 1394, 1364, 1152, 1103, 943, 895 cm⁻¹. ¹H NMR: δ 7.08 (s, 4H), 6.90 (m, 4H), 4.94 (m, 4H), 4.37 (s, 2H), 4.20 (d, $J=14.7$ Hz, 2H), 3.91 $(d, J=14.4 \text{ Hz}, 2H), 3.82 \text{ (s, 2H)}, 3.76 \text{ (s, 12H)}, 3.34 \text{ (br s, 12H)}$ 6H), 3.13 (m, 2H), 2.97 (m, 2H), 2.54 (d, $J=13.8$ Hz, 2H), 1.30 (m, 36H), 1.20 (s, 18H), 1.10 (s, 18H), 1.04 (br s, 18H), 0.95 (s, 18H). ¹³C NMR: δ 213.0, 211.0, 193.8, 192.6, 164.5, 164.0, 157.0, 155.6, 155.2, 154.8, 154.5, 153.8, 150.7, 144.4, 144.1, 136.3, 134.8, 128.0, 127.6, 126.5, 126.3, 125.6, 125.3, 121.3, 120.2, 119.6, 119.3, 78.3, 78.2, 61.5, 57.6, 52.6, 52.3, 51.0, 48.3, 44.8, 44.3, 39.3, 39.1, 34.5, 34.4, 31.9, 28.8, 27.7, 27.5, 27.3. MS (FAB) m/z calcd for $C_{62}H_{76}O_{10}$ +Na: 1003.54. Found: 1003.58.

4.3.6. Compound 3f (two regioisomers in the ratio 1:1). White crystalline solid; R_f : 0.52 (9:1 hexane–ethylacetate); mp>310 °C (decomp.). IR (KBr) ν_{max} : 2957, 1739, 1697, 1483, 1315, 1230, 1055, 898, 836 cm⁻¹. ¹H NMR: δ 7.05 (s, 2H), 6.89 (s, 2H), 4.76 (s, 2H), 4.27 (m, 6H), 4.06 (d, $J=14.5$ Hz, 2H), 3.22 (d, $J=15.4$ Hz, 2H), 3.08 (d, $J=16.1$ Hz, 2H), 2.80 (d, $J=14.6$ Hz, 2H), 2.20 (s, 6H), 1.31 (s, 18H), 1.30 (m, 6H), 0.95 (s, 18H). 13C NMR: d 194.7, 165.5, 158.1, 155.5, 152.6, 144.0, 132.6, 127.7, 126.3, 120.3, 118.8, 78.4, 62.7, 60.9, 48.4, 39.0, 34.4, 32.1, 28.6, 27.8, 15.7, 14.7. MS (FAB) m/z calcd for $C_{56}H_{68}O_8 + H$: 869.49. Found: 869.25.

White crystalline solid; R_f : 0.44 (9:1 hexane–ethylacetate); mp>310 °C (decomp.). IR (KBr) ν_{max} : 2957, 1739, 1697, 1483, 1315, 1230, 1055, 898, 836 cm⁻¹. ¹H NMR: δ 7.03 (s, 2H), 6.86 (s, 2H), 4.84 (d, J=2.1 Hz, 2H), 4.28 (m, 6H), 3.95 (d, $J=15.7$ Hz, 2H), 3.34 (d, $J=15.7$ Hz, 2H), 2.94 (d, $J=15.4$ Hz, 2H), 2.60 (d, $J=14.9$ Hz, 2H), 2.10 (s, 6H), 1.33 (s, 18H), 1.30 (m, 6H), 0.96 (s, 18H). ¹³C NMR:

d 195.0, 165.8, 158.5, 156.4, 151.6, 143.9, 132.8, 128.0, 126.5, 120.6, 118.7, 78.7, 62.9, 61.0, 48.5, 39.2, 34.7, 32.9, 28.9, 27.6, 16.1, 14.9. MS (FAB) m/z calcd for $C_{56}H_{68}O_8 + H$: 869.49. Found: 869.25.

4.4. Typical procedure for the preparation of 5a

Calix[4]bis(spirodienone) 1a (50 mg, 0.078 mmol) was dissolved in dry toluene (8 mL) under inert atmosphere. N-Phenyl maleimide (28 mg, 0.163 mmol) was added to it and stirred at rt for 18 h. The solvent was removed under vacuum and the residue subjected to silica gel column chromatography to remove excess dienophile using 85:15 hexane–ethylacetate solvent mixture affording 5a as a white solid (66 mg, 86%). The product was recrystallized from dichloromethane–acetonitrile mixture.

4.4.1. Compound 5a. White crystalline solid; R_f : 0.079 (9:1) hexane–ethylacetate); mp>275 °C (decomp.). IR (KBr) ν_{max} : 2957, 1717 (br), 1485, 1377, 1201, 901 cm⁻¹. ¹H NMR: d 7.38–7.50 (m, 6H), 7.12 (br s, 8H), 4.83 (s, 2H), 4.02 (d, J=14.1 Hz, 2H), 3.58 (s, 2H), 3.49 (d, J=14.7 Hz, 4H), 3.33 (d, $J=15.3$ Hz, 2H), 3.07 (d, $J=6.3$ Hz, 2H), 2.88 (dd, J_1 =3.6 Hz, J_2 =3.4 Hz, 2H), 1.33 (s, 18H), 0.93 (s, 18H). 13C NMR: d 202.2, 174.7, 174.5, 154.6, 149.9, 144.8, 129.2, 128.7, 126.1, 124.5, 120.4, 120.0, 118.6, 116.5, 113.0, 112.0, 109.2, 82.7, 51.5, 47.2, 45.3, 37.3, 34.4, 31.9, 28.2, 27.4. MS (FAB) m/z calcd for $C_{64}H_{66}O_8N_2 + H$: 991.48. Found: 991.21.

4.4.2. Compound 5b. White crystalline solid; R_f : 0.053 (9:1) hexane–ethylacetate); mp >277 °C (decomp.). IR (KBr) ν_{max} : 2968, 1784, 1747, 1485, 1365, 1236, 933 cm⁻¹. ¹H NMR: d 7.18 (s, 2H), 7.12 (s, 2H), 4.90 (s, 2H), 4.03 (d, $J=14.7$ Hz, 2H), 3.61 (s, 2H), 3.49 (d, $J=15.3$ Hz, 2H), 3.31 (d, $J=15.3$ Hz, 4H), 3.21 (m, 4H), 1.33 (s, 18H), 0.96 (s, 18H). 13C NMR: d 199.8, 171.4, 154.5, 151.7, 146.7, 129.7, 125.6, 121.0, 119.7, 117.2, 112.1, 82.9, 51.3, 49.4, 46.0, 42.4, 37.4, 34.6, 34.5, 28.0. MS (FAB) m/z calcd for $C_{52}H_{56}O_{10}$ +H: 841.39. Found: 841.34.

4.4.3. Compound 5c. White crystalline solid; R_f : 0.053 (9:1) hexane–ethylacetate); mp >267 °C (decomp.). IR (KBr) v_{max} : 2954, 1786, 1720, 1485, 1346, 1288, 1195, 892 cm-1 . 1 H NMR: d 9.70 (s, 2H), 7.17 (s, 2H), 7.07 (s, 2H), 4.85 (s, 2H), 4.01 (d, J=14.7 Hz, 2H), 3.55 (s, 2H), 3.50 (d, J=15.6 Hz, 2H), 3.29 (d, J₁=15.9 Hz, J₂= 14.4 Hz, 4H), 3.15 (d, $J=8.1$ Hz, 2H), 3.04 (d, $J=7.8$ Hz, 2H), 1.32 (s, 18H), 0.93 (s, 18H). 13C NMR: d 202.9, 180.6, 179.7, 150.5, 145.8, 128.1, 124.3, 119.7, 118.7, 117.3, 82.7, 51.1, 49.0, 45.4, 42.5, 37.2, 34.4, 31.6, 29.9, 27.7. MS (FAB) m/z calcd for $C_{52}H_{58}N_2O_8^+$: 838.42. Found: 838.13.

4.4.4. Compound 5d. White crystalline solid; R_f : 0.18 (9:1) hexane–ethylacetate); mp>270 °C (decomp.). IR (KBr) v_{max} : 2954, 2236, 1739, 1483, 1363, 1282, 1203, 1143, 1047, 937 cm⁻¹. ¹H NMR: δ 7.08 (s, 2H), 7.01 (s, 2H), 4.76 (s, 2H), 4.05 (d, $J=14.5$ Hz, 2H), 3.40 (d, $J=15.3$ Hz, 2H), 3.07 (br s, 2H), 3.05 (d, J=14.9 Hz, 2H), 2.72 (dd, J_1 =2.9 Hz, J_2 =2.6 Hz, 2H), 2.45 (d, J=14.6 Hz, 2H), 2.05 (uneven t, J_1 =14.5 Hz, J_2 =8.3 Hz, 2H), 1.75 (d, J=14.1 Hz, 2H), 1.31 (s, 18H), 1.01 (s, 18H). 13C NMR: d 204.4, 154.5,

145.7, 127.7, 125.0, 120.7, 120.0, 119.3, 117.3, 108.7, 84.3, 51.7, 42.8, 37.4, 37.0, 35.1, 31.5, 30.6, 27.3. MS (FAB) m/z

4.4.5. Compound 5e. White crystalline solid; R_f : 0.30 (9:1) hexane–ethylacetate); mp >268 °C (decomp.). IR (KBr) v_{max} : 2953, 2906, 2727, 1730 (br), 1483, 1436, 1362, 1205, 939 cm⁻¹. ¹H NMR: δ 9.47 (s, 2H), 7.08 (s, 2H), 6.84 (s, 2H), 4.72 (d, J=1.5 Hz, 2H), 4.16 (d, J=14.7 Hz, 2H), 3.50 (d, $J=15.3$ Hz, 2H), 3.10 (d, $J=15.6$ Hz, 2H), 3.08 (s, 2H), 2.46 (d, $J=14.7$ Hz, 2H), 2.44 (m, 2H), 1.89 (br s, 4H), 1.30 (s, 18H), 0.98 (s, 18H). ¹³C NMR: δ 202.4, 201.0, 154.4, 152.1, 143.8, 126.3, 124.9, 120.0, 119.5, 116.4, 84.3, 55.2, 53.0, 51.5, 42.6, 34.5, 34.1, 31.7, 29.0, 27.4, 23.9. MS (FAB) m/z calcd for $C_{50}H_{60}O_6 + H$: 756.44. Found: 757.27.

calcd for $C_{50}H_{58}N_2O_4 + H: 750.44$. Found: 751.04.

4.4.6. Compound 5f. White crystalline solid; R_f : 0.32 (9:1) hexane–ethylacetate); mp >283 °C (decomp.): IR (KBr) v_{max} : 2955, 1738 (br), 1481, 1362, 1258, 1200, 1171, 1049, 935 cm⁻¹. ¹H NMR: δ 7.09 (s, 2H), 6.79 (s, 2H), 4.63 (s, 2H), 3.97 (d, J=14.6 Hz, 2H), 3.79 (s, 6H), 3.46 (d, $J=15.5$ Hz, 2H), 3.11 (d, $J=15.6$ Hz, 2H), 3.05 (br s, 2H), 2.74 (dd, J_1 =3.9 Hz, J_2 =3.8 Hz, 2H), 2.40 (d, J=14.7 Hz, 2H), 2.01 (uneven t, J_1 =12.6 Hz, J_2 =11.2 Hz, 2H), 1.71 (m, 2H), 1.30 (s, 18H), 0.97 (s, 18H). 13C NMR: d 203.5, 172.5, 154.7, 149.6, 143.2, 126.6, 124.5, 120.3, 119.3, 116.1, 83.7, 51.9, 51.3, 48.0, 42.4, 36.9, 34.3, 31.6, 28.6, 27.3. MS (FAB) m/z calcd for $C_{52}H_{64}O_8^+$: 816.46. Found: 816.48.

4.4.7. Compound 5g (inseparable isomers in the ratio 1:1). White crystalline solid; R_f : 0.18 (9:1 hexane–ethylacetate); mp>270 °C (decomp.). IR (KBr) v_{max} : 2957, 1742 (br), 1483, 1437, 1365, 1319, 1199, 1178, 1020, 947 cm⁻¹.
¹H NMR: δ 7.20 (s. 2H), 7.11 (s. 2H), 6.99 (s. 2H), 6.77 ¹H NMR: δ 7.20 (s, 2H), 7.11 (s, 2H), 6.99 (s, 2H), 6.77 (s, 2H), 4.91 (s, 2H), 4.60 (s, 2H), 4.05 (d, $J=15.9$ Hz, 2H), 3.89 (s, 6H), 3.85 (s, 6H), 3.81 (s, 6H), 3.78 (s, 6H), 3.63 (s, 4H), 3.50 (s, 2H), 3.35 (m, 8H), 3.22 (s, 4H), 2.88 $(s, 2H)$, 2.79 (m, 2H), 2.47 (d, J=3.9 Hz, 2H), 2.42 (d, J= 3.9 Hz, 2H), 1.31 (s, 36H), 1.01 (s, 18H), 0.87 (s, 18H). ¹³C NMR: δ 204.0, 203.4, 175.6, 175.1, 154.9, 154.7, 154.1, 153.9, 151.9, 151.7, 150.8, 150.5, 145.5, 128.7, 128.5, 127.4, 127.2, 125.9, 125.7, 125.2, 125.1, 120.8, 117.1, 84.1, 83.1, 54.5, 53.8, 53.7, 53.6, 53.5, 52.9, 50.4, 47.3, 44.4, 44.3, 37.0, 36.7, 35.2, 34.4, 31.2, 30.3, 29.7, 29.4, 27.4. MS (FAB) m/z calcd for $C_{56}H_{68}O_{12}^{+}$: 932.47. Found: 932.56.

4.5. Typical experimental procedure for 7a

A solution of 1a (50 mg, 0.078 mmol) and 4-phenyl-1,2,4 triazoline-3,5-dione (28 mg, 0.163 mmol) in dry toluene (5 mL) was stirred under an inert atmosphere at rt. The reaction mixture was stirred at this temperature until the reaction was complete as indicated by TLC (6 h). The solvent was removed under reduced pressure and the residue purified by silica gel column chromatography, to remove excess dienophile, using hexane–ethylacetate (90:10) as the eluent to yield 7a (75 mg, 99%). The product was recrystallized from dichloromethane–acetonitrile mixture by slow evaporation method.

4.5.1. Compound 7a. White crystalline solid; R_f : 0.24 (9:1) hexane–ethylacetate); mp $>$ 274 °C (decomp.). IR (KBr)

 ν_{max} : 2957, 1764, 1712, 1363, 1219, 1093 cm⁻¹. ¹H NMR: δ 7.52–7.37 (m, 10H), 7.20 (s, 2H), 7.11 (s, 2H), 5.24 (s, 2H), 5.11 (d, $J=1.8$ Hz, 2H), 4.28 (d, $J=15.3$ Hz, 2H), 4.18 (d, $J=15.3$ Hz, 2H), 3.63 (d, $J=16.5$ Hz, 2H), 3.52 (d, $J=16.5$ Hz, 2H), 1.33 (s, 18H), 1.07 (s, 18H). ¹³C NMR: d 193.4, 154.6, 154.2, 152.3, 146.2, 131.2, 129.4, 128.8, 128.4, 125.9, 124.4, 121.5, 119.4, 118.1, 81.5, 67.8, 60.6, 37.1, 34.8, 33.9, 32.2, 29.9, 27.6, 26.5. MS (FAB) m/z calcd for $C_{60}H_{62}N_{6}O_{8}$ +H: 996.17. Found: 996.01.

4.5.2. Compound 7b. White crystalline solid; R_f : 0.46 (9:1) hexane–ethylacetate); mp >272 °C (decomp.). IR (KBr) v_{max} : 2931, 1764, 1711, 1482, 1405, 1372, 1109, 897 cm^{-1} . ¹H NMR: δ 7.16 (s, 2H), 7.09 (s, 2H), 5.12 (d, $J=2.0$ Hz, 2H), 4.94 (d, $J=2.0$ Hz, 2H), 4.16 (d, $J=15.4$ Hz, 2H), 4.08 (d, $J=15.4$ Hz, 2H), 3.74 (m, 2H), 3.54 (d, J=16.3 Hz, 2H), 3.43 (d, J=16.3 Hz, 2H), 2.03 (m, 4H), 1.80 (m, 4H), 1.63 (m, 6H), 1.34 (s, 18H), 1.25 (m, 6H), 0.98 (s, 18H). ¹³C NMR: δ 193.4, 155.7, 155.4, 154.2, 151.6, 145.7, 128.2, 124.3, 121.1, 118.8, 118.1, 81.3, 67.2, 60.2, 52.7, 36.8, 34.5, 33.5, 31.9, 29.3, 27.4, 26.3, 25.8, 24.9. MS (FAB) m/z calcd for $C_{60}H_{74}N_6O_8 + H: 1007.56$. Found: 1007.54.

4.5.3. Compound 7c. White crystalline solid; R_f : 0.27 (9:1) hexane–ethylacetate); mp >278 °C (decomp.). IR (KBr) v_{max} : 2955, 2914, 1758, 1711, 1556, 1540, 1455, 1430, 1109, 897 cm⁻¹. ¹H NMR: δ 7.33 (m, 10H), 7.15 (s, 2H), 7.10 (s, 2H), 5.05 (s, 2H), 4.95 (s, 2H), 4.58 (s, 4H), 4.17 (d, $J=15.3$ Hz, 2H), 4.07 (d, $J=15.3$ Hz, 2H), 3.50 (d, $J=16.5$ Hz, 2H), 3.41 (d, $J=16.5$ Hz, 2H), 1.33 (s, 18H), 0.90 (s, 18H). ¹³C NMR: δ 191.5, 153.9, 153.7, 153.0, 147.1, 145.3, 139.1, 130.8, 127.5, 127.2, 124.2, 121.5, 119.2, 117.1, 81.4, 68.6, 59.8, 44.4, 36.7, 34.6, 34.3, 33.7, 32.0, 29.9, 26.5. MS (FAB) m/z calcd for $C_{62}H_{66}N_6O_8+H$: 1022.49. Found: 1023.22.

4.5.4. Compound 7d. White crystalline solid; R_f : 0.24 (9:1) hexane–ethylacetate); mp >260 °C (decomp.). IR (KBr) ν_{max} : 2945, 1759, 1709, 1475, 1438, 1415, 1103, 927, 846 cm-1 . 1 H NMR: d 7.27 (m, 4H), 7.14 (s, 2H), 7.09 (s, 2H), 6.80 (d, J=8.4 Hz, 4H), 5.04 (s, 2H), 4.93 (s, 2H), 4.51 $(s, 4H), 4.15 (d, J=16.8 Hz, 2H), 4.06 (d, J=15.0 Hz, 2H),$ 3.77 (s, 6H), 3.48 (d, $J=16.8$ Hz, 2H), 3.39 (d, $J=15.6$ Hz, 2H), 1.33 (s, 18H), 0.90 (s, 18H). ¹³C NMR: δ 192.0, 159.0, 154.0, 153.1, 147.5, 130.4, 128.8, 127.8, 126.6, 124.5, 122.2, 119.5, 117.3, 115.2, 81.6, 68.7, 59.7, 56.1, 44.0, 36.9, 34.8, 34.4, 31.7, 30.2, 29.4, 26.4. MS (FAB) m/z calcd for $C_{64}H_{70}N_6O_{10}$ +H: 1083.52. Found: 1083.64.

4.5.5. Compound 7e. White crystalline solid; R_f : 0.30 (9:1) hexane–ethylacetate); mp >265 °C (decomp.). IR (KBr) v_{max} : 2959, 1745, 1713, 1483, 1437, 1409, 1201, 1169, 1105, 950, 840, 756 cm⁻¹. ¹H NMR: δ 7.19 (m, 8H), 7.14 $(s, 2H), 7.10 (s, 2H), 5.20 (d, J=1.9 Hz, 2H), 5.17 (d,$ $J=2.0$ Hz, 2H), 4.67 (s, 4H), 4.19 (d, $J=15.4$ Hz, 2H), 3.99 (d, $J=15.5$ Hz, 2H), 3.53 (d, $J=16.2$ Hz, 2H), 3.36 (d, J = 16.3 Hz, 2H), 2.33 (s, 6H), 1.33 (s, 18H), 0.98 (s, 18H). ¹³C NMR: δ 191.8, 153.8, 153.0, 147.1, 139.1, 130.8, 128.5, 128.2, 124.2, 121.8, 119.2, 117.1, 81.3, 68.4, 59.4, 44.1, 36.6, 34.6, 34.1, 33.7, 32.1, 29.9, 29.6, 26.1, 20.9. MS (FAB) m/z calcd for $C_{64}H_{70}N_6O_8$ +: 1050.53. Found: 1050.57.

4.5.6. Compound 7f. White crystalline solid; R_f : 0.27 (9:1) hexane–ethylacetate); mp $>$ 255 °C (decomp.). IR (KBr) ν_{max} : 2955, 1763, 1713, 1485, 1435, 1410, 1199, 1099, 950, 844 cm⁻¹. ¹H NMR: δ 7.28 (m, 8H), 7.10 (s, 2H), 7.08 (s, 2H), 5.19 (s, 2H), 5.16 (s, 2H), 4.67 (s, 4H), 4.18 $(d, J=15.4 \text{ Hz}, 2\text{H}), 3.97 (d, J=15.5 \text{ Hz}, 2\text{H}), 3.52 (d,$ $J=16.3$ Hz, 2H), 3.36 (d, $J=16.3$ Hz, 2H), 1.34 (s, 18H), 0.97 (s, 18H). 13C NMR: d 191.7, 153.8, 152.8, 147.0, 146.3, 135.2, 132.4, 128.5, 128.0, 126.2, 124.1, 121.8, 119.2, 117.0, 81.2, 68.3, 59.4, 43.5, 36.6, 34.6, 34.15, 32.6, 31.4, 29.9, 26.1. MS (FAB) m/z calcd for $C_{62}H_{64}Cl_2N_6O_8 + H: 1091.42$. Found: 1091.09.

4.6. Typical experimental procedure for 9a

To calix[4]bis(spirodienone) 1a (50 mg, 0.078 mmol) was added dry toluene (5 mL) and stirred under inert atmosphere. Diethyl azodicarboxylate (27 mg, 0.155 mmol) was added to it and the mixture heated at $110\degree C$ for 7 h. The solvent was removed under vacuum and the residue subjected to silica gel column chromatography using hexane–ethylacetate mixture (90:10) as the eluent to afford 9a as a white solid (70 mg, 90%).

4.6.1. Compound 9a. White crystalline solid; R_f : 0.21 (9:1) hexane–ethylacetate); mp >252 °C (decomp.). IR (KBr) v_{max} : 2958, 1756, 1738, 1703, 1484, 1413, 1311, 1266, 1251, 1112, 843 cm⁻¹. ¹H NMR: δ 7.05 (s, 2H), 6.98 (s, 2H), 5.43 (s, 2H), 5.20 (s, 2H), 5.13 (d, $J=14.1$ Hz, 2H), 4.97 (d, $J=14.1$ Hz, 2H), 4.19 (m, 8H), 3.64–3.39 (m, 4H), 1.32 (s, 18H), 1.26–1.15 (m, 12H), 0.99 (s, 18H). 13C NMR: δ 196.9, 159.1, 154.9, 151.3, 144.7, 127.4, 126.9, 125.1, 124.9, 120.6, 119.2, 118.6, 84.3, 68.2, 63.1, 62.7, 56.3, 35.3, 35.2, 34.7, 31.9, 29.1, 27.8, 14.6. MS (FAB) m/z calcd for $C_{56}H_{72}O_{12}N_4 + H$: 993.52. Found: 993.48.

4.6.2. Compound 9b. White crystalline solid; R_f : 0.38 (9:1) hexane–ethylacetate); mp $>$ 256 °C (decomp.). IR (KBr) v_{max} : 2960, 1754, 1740, 1486, 1412, 1320, 1276, 1257, 1115, 850 cm-1 . 1 H NMR: d 7.23 (s, 2H), 7.01 (s, 2H), 5.41 (s, 2H), 5.22 (m, 2H), 4.91 (m, 4H), 4.17 (d, J=15.0 Hz, 2H), 3.62 (m, 2H), 3.45 (m, 2H), 3.34 (br s, 2H), 1.34 (s, 18H), 1.26 (m, 24H), 0.99 (s, 18H). 13C NMR: δ 193.1, 157.0, 156.2, 152.0, 151.7, 135.2, 127.3, 121.0, 88.6, 75.0, 74.5, 73.7, 73.1, 34.5, 33.7, 33.5, 31.6, 29.1, 26.9, 22.0, 21.7, 21.5, 21.3, 21.2, 18.7, 18.4. MS (FAB) m/z calcd for $C_{60}H_{80}N_4O_{12}+H$: 1049.58. Found: 1049.25.

4.7. Typical experimental procedure for 11a

Calix[4]bis(spirodienone) $1a$ (50 mg, 0.078 mmol) was dissolved in dry chloroform (10 mL) under inert atmosphere. Benzohydroxamic acid (22 mg, 0.163 mmol) was added to it and stirred for 5 min at rt. To the reaction mixture was added tetrabutylammonium periodate (135 mg, 0.310 mmol) and heated at 61 \degree C for 24 h. The solvent was removed under vacuum and the residue subjected to silica gel column chromatography using 95:5 hexane–ethylacetate mixture to afford 11a (35 mg, 50%) as a white solid.

4.7.1. Compound 11a. White crystalline solid; R_f : 0.54 (9:1) hexane–ethylacetate); mp >235 °C (decomp.). IR (KBr) ν_{max} : 2961, 1759, 1653, 1540, 1481, 1365, 1255 cm⁻¹. ¹H NMR: δ 7.69 (d, J=6.9 Hz, 4H), 7.46–7.38 (m, 6H), 7.17 (s, 2H), 6.91 (s, 2H), 5.85 (s, 2H), 5.12 (s, 2H), 4.04 (d, $J=14.7$ Hz, 2H), 3.64 (d, $J=16.2$, 2H), 3.48 (d, $J=16.2$ Hz, $2H$), 2.36 (d, $J=15.3$ Hz, $2H$), 1.31 (s, $18H$), 1.07 (s, $18H$). ¹³C NMR: δ 195.1, 155.1, 153.6, 144.6, 143.4, 139.6, 128.0, 127.8, 126.0, 123.9, 121.5, 120.4, 116.5, 109.9, 82.5, 58.3, 38.1, 35.7, 34.7, 34.4, 32.1, 28.6, 28.1. MS (FAB) m/z calcd for $C_{58}H_{62}N_2O_8 + H$: 915.45. Found: 915.17.

4.7.2. Compound 11b. White crystalline solid: R_f : 0.50 (9:1) hexane–ethylacetate); $mp>238$ °C (decomp.). IR (KBr) v_{max} : 2965, 1762, 1656, 1640, 1485, 1365, 1257, 867 cm^{-1} . ¹H NMR: δ 7.68 (d, J=7.8 Hz, 4H), 7.39 (d, J = 8.1 Hz, 4H), 7.16 (s, 2H), 6.95 (s, 2H), 5.84 (s, 2H), 5.11 (s, 2H), 4.06 (d, J=14.7 Hz, 2H), 3.63 (d, J=15.9 Hz, 2H), 3.47 (d, $J=16.5$ Hz, 2H), 2.40 (d, $J=15.6$ Hz, 2H), 1.34 (s, 18H), 1.31 (s, 18H), 1.07 (s, 18H). 13C NMR: d 193.6, 178.1, 152.0, 143.2, 142.8, 142.0, 138.2, 126.4, 125.6, 124.6, 123.8, 122.5, 120.0, 118.5, 115.0, 80.2, 58.7, 36.7, 34.2, 33.8, 33.1, 32.7, 29.0, 29.5, 26.8. MS (FAB) m/z calcd for $C_{66}H_{78}N_2O_8+H$: 1027.26. Found: 1027.58.

4.8. Experimental procedure for 12a and 12b

Calix[4]bis(spirodienone) 1a (50 mg, 0.078 mmol) was dissolved in a mixture of chloroform and water (12 mL) in the ratio 1:3. To the reaction mixture sodium hydroxide $($ >7.8 mmol) and a catalytic amount of tetrabutyl ammoniumbromide were added and stirred at rt for 8 h. To the reaction mixture, 5 mL of CHCl_3 and 5 mL water were added, and after phase separation the organic phase was washed with water, brine and then dried over $Na₂SO₄$. After the organic solvent was evaporated, the residue was chromatographed [silica, eluent: hexanes–ethylacetate mixture (98:2)] and the compounds isolated were crystallized from dichloromethane–acetonitrile mixture yielding 30 mg of 12a (48%) and 25 mg of 12b (44%).

4.8.1. Compound 12a. White crystalline solid; R_f : 0.67 (9:1) hexane–ethylacetate); mp $>$ 250 °C (decomp.). IR (KBr) ν_{max} : 2956, 1686, 1479, 1365, 1255, 1103, 874 cm⁻¹. ¹H NMR: δ 7.15 (s, 2H), 7.07 (s, 2H), 6.53 (s, 2H), 4.08 (uneven t, J_1 =14.9 Hz, J_2 =14.1 Hz, 4H), 3.17 (d, J=15.8 Hz, 2H), 2.89 (d, $J=14.8$ Hz, 2H), 2.61 (s, 2H), 1.36 (s, 18H), 0.92 (s, 18H). 13C NMR: d 186.0, 152.6, 144.2, 143.5, 138.7, 125.7, 125.6, 122.6, 120.0, 81.3, 68.3, 41.5, 39.9, 36.0, 34.4, 34.2, 31.9, 27.8, 27.6. MS (FAB): m/z calcd for $C_{46}H_{52}Cl_4O_4+2H: 810.26.$ Found: 810.46.

4.8.2. Compound 12b. Pale yellow solid; R_f : 0.63 (9:1 hexane–ethylacetate); mp>260 °C (decomp.). IR (KBr) v_{max} . 2960, 1689, 1365, 1201, 869 cm⁻¹. ¹H NMR: δ 7.15 (s, 1H), 7.09 (s, 1H), 7.05 (s, 2H), 6.62 (s, 1H), 6.53 (s, 1H), 5.83 (s, 1H), 4.12 (m, 3H), 3.71 (d, $J=15.6$ Hz, 1H), 3.18 $(d, J=16.2 \text{ Hz}, 1H), 3.03 (d, J=15.3 \text{ Hz}, 1H), 2.85 (uneven)$ t, J_1 =14.1 Hz, J_2 =13.2 Hz, 2H), 2.62 (s, 1H), 1.35 (s, 18H), 1.03 (s, 9H), 0.96 (s, 9H). 13C NMR: d 195.0, 186.5, 153.3, 144.8, 143.7, 143.4, 142.3, 139.1, 138.4, 134.3, 127.3, 126.3, 125.7, 124.4, 123.1, 122.6, 122.5, 120.3, 120.1, 119.6, 119.3, 81.6, 81.3, 68.3, 40.5, 40.1, 38.2, 34.9, 34.3, 31.9, 31.5, 28.7, 28.5, 27.9, 27.6. MS (FAB) m/z calcd for $C_{45}H_{52}Cl_{2}O_{4} + H$: 727.32. Found: 727.42.

Acknowledgements

V.B.G. thanks the CSIR, Govt. of India, New Delhi for Research Fellowships. Thanks are also due to Ms. Saumini Mathew and Ms. S. Viji for NMR and Mass spectral data.

References and notes

- 1. (a) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161–170; (b) Wieser, C.; Dieleman, C. B.; Matt, D. Coord. Chem. Rev. 1997, 165, 93–161; (c) Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Nascone, R. P.; White, A. J. P.; Williams, D. J. Chem.—Eur. J. 2002, 8, 3148–3156; (d) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713–1734; (e) Casnati, A.; Sansone, F.; Ungaro, R. Acc. Chem. Res. 2003, 36, 246–254.
- 2. (a) Calixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer Academic: Dordrecht, 2001; (b) Calixarenes in Action; Mandolini, L., Ungaro, R., Eds.; Imperial College: London, 2000.
- 3. Litwak, A. M.; Biali, S. E. J. Org. Chem. 1992, 57, 1943–1945.
- 4. Aleksiuk, O.; Grynszpan, F.; Biali, S. E. J. Chem. Soc., Chem. Commun. 1993, 11–13.
- 5. Litwak, A. M.; Grynszpan, F.; Aleksiuk, O.; Cohen, S.; Biali, S. E. J. Org. Chem. 1993, 58, 393–402.
- 6. Aleksuik, O.; Grynszpan, F.; Biali, S. E. J. Org. Chem. 1993, 58, 1994–1996.
- 7. Grynszpan, F.; Biali, S. E. J. Chem. Soc., Chem. Commun. 1994, 2545–2546.
- 8. Grynszpan, F.; Aleksiuk, F.; Biali, S. E. J. Org. Chem. 1994, 59, 2070–2074.
- 9. (a) Simaan, S.; Agbaria, K.; Biali, S. E. J. Org. Chem. 2002, 67, 6136–6142; (b) Biali, S. E. Synlett 2003, 1–11.
- 10. Varma, L. R.; Ganga, V. B.; Suresh, E. Tetrahedron Lett. 2005, 46, 3061–3063.
- 11. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 261693.
- 12. For previous reviews, see: Wollweber, H. Diels–Alder Reaction; Thieme: Stuttgart, 1972; Fahr, E.; Lind, H. Angew. Chem., Int. Ed. Engl. 1966, 5, 372–384.
- 13. Jensen, F.; Foote, C. S. J. Am. Chem. Soc. 1987, 109, 6376– 6385.
- 14. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 605783.
- 15. Burrage, M. E.; Cookson, R. C.; Gupta, S. S.; Stevens, I. D. R. J. Chem. Soc., Perkin Trans. 2 1975, 1325–1334.
- 16. Forrest, A. K.; Schmidt, R. R.; Jibril, I.; Huttner, G. J. Chem. Soc., Perkin Trans. 1 1984, 1981–1987.
- 17. Kresze, G.; Morper, M.; Bijev, A. Tetrahedron Lett. 1977, 2259–2262.
- 18. Boger, D. L.; Patel, M.; Takusagawa, F. J. Org. Chem. 1985, 50, 1911–1916.
- 19. (a) Defoin, A.; Fritz, H.; Geffroy, G.; Streith, J. Tetrahedron Lett. 1986, 27, 4727-4730; (b) Defoin, A.; Schmidlin, C.; Streith, J. Tetrahedron Lett. 1984, 25, 4515–4518; (c) Baldwin, J. E.; Otsuka, M.; Wallace, P. M. Tetrahedron 1986, 42, 3097–3110; (d) Corrie, J. E. T.; Kirby, G. W.; Mackinnon, J. W. M. J. Chem. Soc., Perkin Trans. 1 1985, 883–886.
- 20. (a) Defoin, A.; Fritz, H.; Schmidlin, C.; Streith, J. Helv. Chim. Acta 1987, 70, 554–569; (b) Dubey, S. K.; Knaus, E. E. J. Org. Chem. 1985, 50, 2080–2086; (c) Miller, A.; Paterson, T. M.; Procter, G. Synlett 1989, 32–34.
- 21. Varma, L. R.; Ganga, V. B.; Suresh, E.; Suresh, C. H. Tetrahedron Lett. 2006, 47, 917–921.
- 22. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 626498.